Search results for "sequential Monte Carlo"

showing 5 items of 5 documents

Identifying territories using presence-only citizen science data : An application to the Finnish wolf population

2022

Citizens, community groups and local institutions participate in voluntary biological monitoring of population status and trends by providing species data e.g. for regulations and conservation. Sophisticated statistical methods are required to unlock the potential of such data in the assessment of wildlife populations. We develop a statistical modelling framework for identifying territories based on presence-only citizen science data. The framework can be used to jointly estimate the number of active animal territories and their locations in time. Our approach is based on a data generating model which consists of a dynamic submodel for the appearance/removal of territories and an observatio…

reviiritEcological Modelingbayesilainen menetelmäcitizen science datasusipaikkatietoanalyysisequential Monte CarloeläinkannatBayesian statisticsterritory identificationMonte Carlo -menetelmätpopulaatiotkansalaishavainnotkansalaistiedepresence-only dataspatio-temporal model
researchProduct

Contributed discussion on article by Pratola

2016

The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.

Statistics and Probabilitymodel selectionMarkov Chain Monte Carlo (MCMC)Bayesian regression treeComputer scienceBig dataBayesian regression tree (BRT) modelsComputingMilieux_LEGALASPECTSOFCOMPUTINGbirth–death processMachine learningcomputer.software_genreSequential Monte Carlo methods01 natural sciencespopulation Markov chain Monte Carlo010104 statistics & probabilitysymbols.namesakebig data0502 economics and businessBayesian Regression Trees (BART)0101 mathematics050205 econometrics Bayesian treed regressionMultiple Try Metropolis algorithmsINFERÊNCIA ESTATÍSTICAbusiness.industryApplied MathematicsModel selection05 social sciencesRejection samplingData scienceVariable-order Bayesian networkTree (data structure)Tree traversalMarkov chain Monte Carlocontinuous time Markov processsymbolsArtificial intelligencebusinessBayesian linear regressioncommunication-freecomputerGibbs samplingBayesian Analysis
researchProduct

Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data

2020

The statistical analysis of the information generated by medical follow-up is a very important challenge in the field of personalized medicine. As the evolutionary course of a patient's disease progresses, his/her medical follow-up generates more and more information that should be processed immediately in order to review and update his/her prognosis and treatment. Hence, we focus on this update process through sequential inference methods for joint models of longitudinal and time-to-event data from a Bayesian perspective. More specifically, we propose the use of sequential Monte Carlo (SMC) methods for static parameter joint models with the intention of reducing computational time in each…

Statistics and ProbabilityComputer sciencebusiness.industryBayesian probabilitySequential monte carlo methodsMachine learningcomputer.software_genre01 natural sciencesField (computer science)010104 statistics & probability03 medical and health sciences0302 clinical medicineEvent data030220 oncology & carcinogenesisStatistical analysisPersonalized medicineArtificial intelligence0101 mathematicsStatistics Probability and UncertaintybusinessJoint (audio engineering)CartographycomputerStatistical Modelling
researchProduct

Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions

2021

We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give conver…

FOS: Computer and information sciencesStatistics and ProbabilityDiscretizationComputer scienceMarkovin ketjutInference010103 numerical & computational mathematicssequential Monte CarloBayesian inferenceStatistics - Computation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakediffuusio (fysikaaliset ilmiöt)FOS: MathematicsDiscrete Mathematics and Combinatorics0101 mathematicsHidden Markov modelComputation (stat.CO)Statistics - Methodologymatematiikkabayesilainen menetelmäApplied MathematicsProbability (math.PR)diffusionmatemaattiset menetelmätMarkov chain Monte CarloMarkov chain Monte CarloMonte Carlo -menetelmätNoiseimportance sampling65C05 (primary) 60H35 65C35 65C40 (secondary)Modeling and Simulationsymbolsmatemaattiset mallitStatistics Probability and Uncertaintymultilevel Monte CarloParticle filterAlgorithmMathematics - ProbabilityImportance samplingSIAM/ASA Journal on Uncertainty Quantification
researchProduct

Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers

2018

We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…

Statistics and ProbabilityMetropoliswithin-Gibbsgeometric ergodicity01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesakeFOS: MathematicsMetropolis-within-GibbsApplied mathematicsErgodic theory0101 mathematicsGibbs measureQAMathematics65C40 (Primary) 60J05 65C05 (Secondary)Particle GibbsMarkov chainGeometric ergodicity010102 general mathematicsErgodicityuniform ergodicityProbability (math.PR)iterated conditional sequential Monte CarloMarkov chain Monte CarloIterated conditional sequential Monte CarloRate of convergencesymbolsUniform ergodicityparticle GibbsParticle filterMathematics - ProbabilityGibbs sampling
researchProduct