Search results for "sequential Monte Carlo"
showing 5 items of 5 documents
Identifying territories using presence-only citizen science data : An application to the Finnish wolf population
2022
Citizens, community groups and local institutions participate in voluntary biological monitoring of population status and trends by providing species data e.g. for regulations and conservation. Sophisticated statistical methods are required to unlock the potential of such data in the assessment of wildlife populations. We develop a statistical modelling framework for identifying territories based on presence-only citizen science data. The framework can be used to jointly estimate the number of active animal territories and their locations in time. Our approach is based on a data generating model which consists of a dynamic submodel for the appearance/removal of territories and an observatio…
Contributed discussion on article by Pratola
2016
The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.
Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
2020
The statistical analysis of the information generated by medical follow-up is a very important challenge in the field of personalized medicine. As the evolutionary course of a patient's disease progresses, his/her medical follow-up generates more and more information that should be processed immediately in order to review and update his/her prognosis and treatment. Hence, we focus on this update process through sequential inference methods for joint models of longitudinal and time-to-event data from a Bayesian perspective. More specifically, we propose the use of sequential Monte Carlo (SMC) methods for static parameter joint models with the intention of reducing computational time in each…
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
2021
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give conver…
Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
2018
We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…